Steam%Cane and Individual
Body Heating Surface Calculation in Sugar Industry
1.Calculation of steam%cane and
evaporator set individual bodies heating surface have placed one of the major
calculation in equipment
design drawing of sugar process industry.
2. In the
steam%cane calculation involve so many factors like type of multiple effect evaporators, types of juice heaters, types of pans, bleeding
arrangement for juice heating and massecuite boiling ect.
3. Concentration of sugarcane juice in sugar industry
is done in multiple effect evaporators either in Quadruple, Quintuple or DEVC +
Quad. These evaporator systems are based on Reileaux principle selected
on the basis.
4. In maximum
sugar industries Quintuple
effect evaporator has been installed keeping in mind to get lower steam
consumption in boiling house using extensive vapour bleeding.
5. In this article proved formulas for steam%cane calculation and also gave formulas to find required heating
surface of the individual evaporator bodies. And also provided one powerful online calculator for above calculations.
Formulas involving in this calculation:
1. First step
in this calculation find the pressure
drop across the evaporator set and also find individual bodies pressures,
temperatures and Latent heat for given exhaust pressure and lost body vacuum of
the evaporator set. It has explained in my another article please go through
the below link
Principles
and Pressure Drop Calculation across the Multiple Effect Evaporator Bodies
2. Vapour required for
juice heating = [ Q x Cp x ΔT ] / λ
Q=Quantity of juice flow in Ton/hr
Cp =Specific heat of juice Kcal/kg/oC
ΔT =Temp difference of inlet and outlet of
the juice
λ =Latent Heat of the vapour in kal/kg
(Note: If the DCH( direct contact heater)
will use for juice heating than vapour required quantity for juice heating
to be add into the quantity of juice for further calculation. Latent heat
value to be take as per heating vapour.)
3. Vapour required for
massecuite boiling = K x M x [ (Brix of massecuite – Brix of feed material)
/ Brix of massecuite]
K = 1.5 for Batch Pan and 1.2 for Continuous
Pan.
M = Quantity of massecuite in Ton/hr.
Note:
a) It is better to add moment water
percentage to above required vapour.
b) For better understanding and analysis
propose to be calculate specific steam consumption of the individual
massecuites like A,B & C m/c. The units of specific steam consumption
is Ton of vapour per Ton of massecuite. ( i.e Specific steam consumption
= Vapour required for massecuite boiling per tonofmssecuite)
4. Vapour consumption for
miscellaneous like pan
washing, seed melting, molasses reconditioning, sulphur melting and super
heated wash water system.
Generally these were considering as on
percentage of crushing rate. Generally consider the values as follow as
a) For Pan washing take 0.2 to 0.25 % cane
b) For Seed melting take 0.4 to 0.6 % cane.
c) For molasses reconditioning take 0.4 to 0.6 % cane
d) For Super heated wash water (SHWW) system take 0.2
to 0.25% cane
e) For Sulphur melting purpose take 0.2 to 0.4 % cane.
Now a days for sulphur melting follows like E- boiler or wapcon system ect. to
avoid 7ata steam.
5. Total Evaporation Rate = [
(Brix of Syrup) – (Brix of C.Jc) / (Brix of syrup) ] x Final clear juice
quantity.
a) Here Brix
of clear juice = Brix of mixed juice x [ (Mixed juice
Quantity / Final clear juice quantity) ]
b) C.Jc % Cane = Final quantity of clear juice x 100 / Crushing
rate
c) Final clear juice quantity = Juice quaintly after the juice heating – Mud quantity
in mixed juice ( Final clear juice quantity will change in the case of heating
the juice in DCH otherwise it will same to quantity of mixed juice).
Vapour Production = Evaporation Rate x Clear Juice Quantity in
Ton/hr than calculate “ X “ Value ( X =Quantity
of Vapour goes to the condenser of evaporator in Ton/hr)
( Note: ” X ” should be have positive value.
X = Positive valve than given bleeding
arrangement is ok
X = Negative value than given bleeding
arrangement should not possible so to be change the bleeding arrangement (i.e
Require vapour is more than vapour produced from Evaporators)
6. Total Exhaust required
for Process in Ton/hr = X
+ Vapour require for Juice heating + Vapour required for massecuite
boiling + Vapour required for miscellaneou
7. Steam% Cane = Total
Exhaust required for Process x 100 / Crushing Rate in TCH
For better understanding and analysis purpose
we can calculate individual steam consumption as follow as
a) Steam%cane for total Juice Heating = Total Vapour
required for juice heating x 100 / Crushing Rate in TCH.
b) Steam%Cane for massecuite Boiling = Total Vapour
required for massecuite boiling x 100 / Crushing Rate in TCH.
c) Steam % Cane for Evaporators = Total Quantity of
Vapour goes to the evaporator condenser in Ton/hr x 100 / Crushing Rate in TCH.
Steam%Cane for Miscellaneous= Total Vapour
required for Miscellaneous x 100 / Crushing Rate in TCH
Total
Steam%cane = Steam%cane for total Juice Heating + Steam%Cane for massecuite
Boiling + Steam % Cane for Evaporators + Steam % Cane for
Miscellaneous.
It is also helpful to cross checking of
calculation.
8. Heating surface requirement for
individual bodies as per general method.
Heating surface
requirement = vapour production from the body in kg/hr / Evaporation rate of
the body.
Evaporation rates can be calculate by the
existing bleeding vapour arrangement.
Evaporation Rate = Vapour production in that body in Ton/hr x
100/ Total vapour production in all set of evaporator bodies.
But in calculation of heating surface will be
taking general evaporation rates of evaporator bodies.
Quadruple Effect in Kg/m2/hr |
Quintuple Effect in Kg/m2/hr |
|||
Max |
Min |
Max |
Min |
|
1st effect |
35 |
30 |
35 |
30 |
2nd effect |
30 |
25 |
30 |
25 |
3rd effect |
25 |
20 |
25 |
20 |
4th effect |
25 |
20 |
20 |
15 |
5th effect |
15 |
10 |
As Per Hugot given
Evaporation Rate of The Several Vessels of a multiple effect working under the
condition of temperature drop from 120oC to 55oC
Triple Effect |
Quadruple Effect |
Quintuple Effect |
||||
Kg/m2/hr |
Lb/Ft2/hr |
Kg/m2/hr |
Lb/Ft2/hr |
Kg/m2/hr |
Lb/Ft2/hr |
|
1st effect |
53 |
11 |
37 |
7.6 |
28 |
5.7 |
2nd effect |
48 |
9.8 |
35 |
7.2 |
26 |
5.3 |
3rd effect |
43 |
8.8 |
32 |
6.6 |
25 |
5.1 |
4th effect |
28 |
5.7 |
25 |
5.1 |
||
5th effect |
17 |
3.5 |
9. Heating surface requirement for evaporator bodies as per
E.Hugot formula.
Heating surface
requirement= vapour production/ ΔT * coefficient of heat transfer.
Outlet Brix of the body = [ (Juice Inlet Quantity x Brix of inlet
juice) / ( Juice inlet Quantity – Vapour Production in that particular body) ]
Average Brix of the body = [ Outlet Brix + Inlet Brix ] / 2
Boiling Point elevation = Boiling point elevation found from HANDBOOK
OF CANE SUGAR ENGINEERING by E.Hugot Page No. 501 table no. 32.3
(Note:
In this table considered the parameter liquid column height in the body,
Brix of the body and temperature of the liquid in that body.
a) For liquid column height generally take
1/3rd height of the tube in Robert type body and 20%
height of the tube in semi kestner body.
b) For Brix of the body to be take average
brix.)
Effective boiling point
of the body = Temperature of the body + Boiling Point
elevation.
ΔT = Temperature of inlet
vapour of the body – Effective boiling point of the body
Coefficient of heat transfer calculated from
the Dessin formula as follow as.
Dessin proposed a
formula permitting the evaporation coefficient to be calculated for any vessel
of a multiple effect:
C = 0.001 (100 – B) (T – 54)
C = specific
evaporation coefficient for the evaporator, in kg of vapour/ m2/oC/hr
B = Brix of the juice leaving the vessel
T = temperature of the heating steam in the
calendria, in °C (°F).
(Note: To get better result from the above
formula to be take in the place of coefficient 0.001 as follow as
For 1st effect = 0.001,
2nd effect = 0.0009,
3rd effect= 0.0009,
4th effect = 0.0008,
5th effect = 0.0008).
No comments:
Post a Comment